Orientably regular maps with Euler characteristic divisible by few primes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientably regular maps with Euler characteristic divisible by few primes

Let G be a (2,m, n)-group and let x be the number of distinct primes dividing χ, the Euler characteristic of G. We prove, first, that, apart from a finite number of known exceptions, a nonabelian simple composition factor T of G is a finite group of Lie type with rank n ≤ x. This result is proved using new results connecting the prime graph of T to the integer x. We then study the particular ca...

متن کامل

Regular maps and hypermaps of Euler characteristic -1 to -200

This paper describes the determination of all orientably-regular maps and hypermaps of genus 2 to 101, and all non-orientable regular maps and hypermaps of genus 3 to 202. It extends the lists obtained by Conder and Dobcsányi (2001) of all such maps of Euler characteristic −1 to −28, and corrects errors made in those lists for the vertexor face-multiplicities of 14 ‘cantankerous’ non-orientable...

متن کامل

Regular maps with almost Sylow-cyclic automorphism groups, and classification of regular maps with Euler characteristic −p2

A regular map M is a cellular decomposition of a surface such that its automorphism group Aut(M) acts transitively on the flags of M. It can be shown that if a Sylow subgroup P ≤ Aut(M) has order coprime to the Euler characteristic of the supporting surface, then P is cyclic or dihedral. This observation motivates the topic of the current paper, where we study regular maps whose automorphism gr...

متن کامل

The Euler-Poincaré characteristic of index maps∗

We apply the concept of the Euler-Poincaré characteristic and the periodicity number to the index map of an isolated invariant set in order to obtain a new criterion for the existence of periodic points of a continuous map in a given set.

متن کامل

Arithmetic Progressions with Common Difference Divisible by Small Primes

n(n + d) . . . (n + (k − 1)d) = by (1.1) in positive integers n, k ≥ 2, d > 1, b, y, l ≥ 3 with l prime, gcd(n, d) = 1 and P (b) ≤ k. We write d = D1D2 (1.2) where D1 is the maximal divisor of d such that all prime divisors of D1 are congruent to 1 ( mod l). Thus D1 and D2 are relatively prime positive integers such that D2 has no prime divisor which is congruent to 1 (mod l). Shorey [Sh88] pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2013

ISSN: 0024-6107

DOI: 10.1112/jlms/jdt010